ABSTRACT

This poster proposes a post disaster evaluation of the damages produced by the tsunami in the Tohoku-oki region considering knowledge discovery from TerraSAR-X (TSX) products, by mapping extracted primitive features into semantic classes, thus assuring an interactive technique for productive information mining.

Knowledge discovery from Earth Observation images implies mapping low level descriptors (primitive features) extracted from the image into semantic classes in order to provide an interactive method for effective image information mining. In the frame of information theory a communication channel is considered between remote sensing imagery and the user who receives existing information in the data sources, coded as image semantic content. This channel has three components - Data Source Model Generation, Query and Data Mining. Data Source Model Generation uses image content analysis to generate a set of scene's content descriptors. Further, the Query component involves the user and performs an image retrieval based on image content as query parameter. The query component relies on the Support Vector Machine classifier which is able to group descriptors into relevant semantic classes. The classifier supports rapid mapping scenarios and interactive mapping.

The envisaged data mining process includes three stages: data annotation, data query and quantitative analysis of the results. The data annotations step considers dataset description, data preparation and data classification in order to perform user annotations.

Some query examples considering several scenarios include: Assessment of the transportation infrastructures, high risk of broken roads caused by damaged bridges, debris detection, assessment of aquaculture areas, and possible energy loss due to the damaged high voltages poles or assessment of agriculture areas, damaged crops and estimation of losses.

DESCRIPTION OF THE EVENT

On 11th March 2011 the earthquake in northern Japan and the tsunami that followed left thousands persons dead or missing. The epicenter was at 128 km away from Sendai, the largest city in the Northeast area of Japan, at 38.297N, 142.372S. The destructive tsunami, generated by the earthquake hit the coastline several minutes after the earthquake causing huge casualties, damages and the crisis at the Fukushima Daichi nuclear plant. Particularly, on March 12, the Sendai region was partially clouded so that only the use of microwave data SAR data, capable to penetrate clouds, allows a detailed and complete evaluation of the region.

PROPOSED POST DISASTER SCENARIO IN THE FRAME OF DATA MINING

At the next level, these patches are converted into local features to be further used as content descriptors, in order to characterize image structures.[3]

Considering the extracted descriptors the next step is clustering, which aims to associate recognized classes. Further on an active learning stage is mandatory in order to semantically label the classes. The classifier is able to almost completely retrieve all the similar patches belonging to the same semantic label.

CONCLUSIONS

The described scenario makes use of the SVM classifier to generate semantic learning in a Content Base Image Retrieval approach. The results include detailed semantic categories for rapid mapping obtained using semi automatic methods. For example using only one query through the entire database 2500 patches size of 100 x 100 pixels, from both images, before and after tsunami) is possible to detect all the regions affected by tsunami. Moreover, searching in the database for the semantic label ‘flooded areas’, the results are not only the patches annotated with this label in the post disaster image but the initial all the regions affected by tsunami. Moreover, searching in the database for the semantic label “flooded areas”, the results are not only the patches annotated with this label in the post disaster image but the initial all the regions affected by tsunami.

REFERENCES


Acknowledgement

This work has been conducted in the frame of the Romanian Exploratory Research Project PNCDI-II GEODIM-Platform for GeoInformation Support of Disaster Management, ct.202/2012 and also in the frame of European Space Agency Project -EOLIB (Earth Observation Image Librarian). Images provided by courtesy of DLR.